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Efficient Computation of Morse-Smale Complexes for
Three-dimensional Scalar Functions

Attila Gyulassy, Vijay Natarajan, Member, IEEE, Valerio Pascucci, Member, IEEE,
and Bernd Hamann, Member, IEEE

Abstract— The Morse-Smale complex is an efficient representation of the gradient behavior of a scalar function, and critical points
paired by the complex identify topological features and their importance. We present an algorithm that constructs the Morse-Smale
complex in a series of sweeps through the data, identifying various components of the complex in a consistent manner. All components
of the complex, both geometric and topological, are computed, providing a complete decomposition of the domain. Efficiency is
maintained by representing the geometry of the complex in terms of point sets.

Index Terms—Morse theory, Morse-Smale complexes, computational topology, multiresolution, simplification, feature detection, 3D
scalar fields.

1 INTRODUCTION

Complex scientific data require sophisticated techniques for effective
exploration. The ability to view data at multiple resolutions is neces-
sary to remove unnecessary clutter and aid in understanding the fea-
tures and structure in the data. Ideally methods that employ multiple
resolutions ensure that important features are preserved across all res-
olutions. Typically, multi-resolution methods start with the highest
resolution data and obtain coarser representations through simplifica-
tion. It is desirable that features are maintained throughout this simpli-
fication, therefore features have to be identified and ordered according
to their importance. Traditional approaches typically use a geomet-
ric approach, where the numerical error associated with the simplified
model is used as the measure of approximation quality. These methods
have the drawback that removal of features is not always controlled.
Several methods based on topology have been employed to address
this issue. In particular, the Morse-Smale complex has been shown
to be an effective structure for identifying, ordering, and selectively
removing features. We present an efficient algorithm that computes
the Morse-Smale complex for volumetric domains using a novel point
based representation of the various cells in the complex.

1.1 Related work
Features in a scalar field correspond to topological changes in the iso-
surface during a sweep of the domain. The life-cycle of a topologi-
cal feature during this sweep is indicated by a pair of critical points,
one indicating the creation of the feature and the other the feature’s
destruction. Topology-aware methods have proven to be effective in
controlled simplification of functions in a scalar field and hence in
the creation of multiresolution representations. As opposed to geome-
try simplification using mesh decimation operators like edge contrac-
tion [7, 12, 13, 18, 21, 27], which result in unpredictable simplifica-
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tion of topological features, topology-aware methods either monitor
changes to the topology [6, 14] or explicitly compute the topological
features and perform necessary geometric operations to remove small
features.

The Reeb graph [23] traces components of contours/isosurfaces as
once sweeps through the allowed range of isovalues. In the case of
simply connected domains, the Reeb graph has no cycles and is called
a contour tree. Reeb graphs, contour trees, and their variants have been
used successfully to guide the removal of topological features [7, 4, 15,
28, 29, 30, 3]. Reeb graphs and contour trees have been used to trace
the construction, merging, and destruction of isosurface components.
The Morse-Smale complex, however, is a more complete description,
since it also detects genus changes in isosurfaces.

Partitions of surfaces induced by a piecewise-linear function has
been studied in different fields, under different names, motivated by
the need for an efficient data structure to store surface features. Cay-
ley [5] and Maxwell [20] propose a subdivision of surfaces using
peaks, pits, and saddles along with curves between them. The develop-
ment of various data structures for representing topographical features
is discussed by Rana [22].

The Morse-Smale complex is a topological data structure that pro-
vides an abstract representation of the gradient flow behavior of a
scalar field [26, 25]. Edelsbrunner et al. [10] defined the Morse-Smale
complex for piecewise-linear 2-manifolds by considering the PL func-
tion as the limit of a series of smooth functions and using the intuition
to transport ideas from the smooth case. They also give an efficient
algorithm to compute the Morse-Smale complex, restricted to edges
of the input triangulation, and to build a hierarchical representation by
repeated cancellation of pairs of critical points. Bremer et al. [2] im-
proved on the algorithm and described a multiresolution representation
of the scalar field. Both algorithm trace paths of steepest ascent and
descent beginning at saddle points. These paths constitute boundaries
of 2D cells of the Morse-Smale complex. Cells in the Morse-Smale
complex of a 3D scalar field can be of dimension 0, 1, 2, or 3. Tracing
boundaries of the 3D cells while maintaining a combinatorial valid
complex is a non-trivial task and a practical implementation of such
an algorithm remains a challenge [9]. Nevertheless, the Morse-Smale
complex has been computed for volumetric data and successfully used
to identify features through repeated application of atomic cancellation
operations [16]. Computation of the complex in this manner requires a
preprocessing step that subdivides every voxel by inserting “dummy”
critical points, and therefore has a large computational overhead. For-
man [11] extended the smooth theory to discete functions. Lewiner
et al. [19] showed how a discrete gradient field could be constructed
and used to identify the Morse-Smale complex in two-dimensions, and
proved that construction of the three-dimensional gradient field with
minimum number of critical simplices is NP-hard.

The algorithm we present in this paper uses a region growing ap-



Fig. 1. Local pictures of a regular point and the four types of criti-
cal points (minimum, 1-saddle, 2-saddle, and maximum) with shaded
oceans, white continents and integral lines [17].

proach similar to the watershed transform [24, 1]. The initial growing
of 3-manifolds produces a similar segmentation, however, our algo-
rithm also computes the connectivity of the full Morse-Smale com-
plex, which is necessary for full topology-based simplification of vol-
umetric data.

1.2 Contributions
We introduce a new algorithm for computing the Morse-Smale com-
plex for volumetric domains. Cells of all dimensions in the Morse-
Smale complex are explicitly computed resulting in a partition of the
domain. Our algorithm operates on a tetrahedralization, however it
uses a point based representation to store cells of the Morse-Smale
complex. Given a volumetric scalar field over a grid, we create an
implicit tetrahedralization, and find the Morse-Smale complex of the
resulting piecewise-linear function. Gyulassy et al. [17] showed
how the Morse-Smale complex could be used in visualization and
topology-based simplification. We reproduce those results, and show
that the algorithm introduced in this paper is faster and more efficient.

2 BACKGROUND

Morse theory has been well studied in the context of smooth scalar
functions. However, scientific data is often presented as a set of dis-
crete samples over a domain, such as a volumetric grid or a tetrahedral-
ization. We utilize a description of Morse theory for piecewise linear
(PL) 3-manifolds presented in Edelsbrunner et al. [10], and apply it
to our point-set representation.

2.1 Morse Functions and Morse-Smale Complex
A real-valued smooth map f : M → R defined over a compact 3-
manifold M is a Morse function if all its critical points are non-
degenerate (i.e., the Hessian matrix is non-singular for all critical
points) and no two critical points have the same function value. Fig-
ure 1 shows local neighborhoods of the four types of non-degenerate
critical points. An integral line of f is a maximal path in M whose
tangent vectors agree with the gradient of f at every point of the path.
Each integral line has a natural origin and destination at critical points
of f where the gradient becomes zero. Ascending and descending
manifolds are obtained as clusters of integral lines having common
origin and destination respectively. The Morse-Smale complex parti-
tions M into regions by clustering integral lines that share common
origin and destination. In Morse-Smale functions, the integral lines
connect critical points of different indices. For example, the 3D cells
of the Morse-Smale complex cluster integral lines that originate at a
given minimum and terminate at an associated maximum. The cells of
different dimensions are called crystals, quads, arcs, and nodes. Note
that the Morse-Smale complex is an overlay of ascending and descend-
ing manifolds, which individually partition M as well. The arcs form
a pairing of critical points that we call the combinatorial structure of
the Morse-Smale complex. Figure 2 illustrates that each critical point
in the complex is associated with an ascending manifold of dimension
3− index(p) and a descending manifold of dimension index(p), where
the index of a minimum, 1-saddle, 2-saddle, and maximum is 0, 1, 2,
and 3 respectively. We refer to ascending and descending manifold in
general as n-manifolds, where n can be 0,1,2, or 3.

2.2 Piecewise Linear (PL) Functions
Scientific data is usually available as a set of discrete samples over a
smooth manifold M, represented by a triangulation K. Let K be a tri-
angulation of the given 3-manifold M. The underlying space of K is

Fig. 2. The dimension of ascending (red) and descending (blue) man-
ifolds depends on the index of the corresponding critical points. The
ascending manifolds of a minimum, 1-saddle, 2-saddle, and maximum
are a volume, a surface, pair of arcs, and a point respectively. Similarly,
the descending manifolds are a point, a pair of arcs, a surface, and a
volume.

homeomorphic to M. K consists of simplices of dimension 0, 1, 2, and
3, which we refer to as vertices, edges, triangles, and tetrahedra. We
denote Ki ⊂ K as the set of i-dimensional simplices in the triangula-
tion, for example, K0 is the set of all vertices. In general, the function
defined over K is not a Morse function. We simulate a perturbation [8,
Section 1.4] to ensure that all critical points are non-degenerate and
hence identify the given distance field as a Morse function. We define
some key terms relevant to PL functions:

• LINK The set of vertices in the spherical neighborhood of a ver-
tex p ∈ K0 is called the link of p, denoted Lk p

• LOWER LINK The lower link of a vertex p ∈ K0 denoted
Lk− p is defined as the set of vertices q ∈ K such that q ∈ Lk p
and f (q) < f (p).

• INCIDENT A set of vertices S ⊆ K0 is incident on a vertex
p ∈ K0 if there exists a point q ∈ S such that q ∈ Lk p, i.e. the
intersection of S and Lk p is non-empty.

We define a quasi Morse-Smale complex for a PL function as a seg-
mentation of K where each n-manifold is made up of simplices in K.
The Morse-Smale complex partitions M into regions by clustering in-
tegral lines that share common origin and destination. A result of this
segmentation is that a n-manifold forms the boundary between n + 1-
manifold regions. In fact, a critical point of the complex represents
exactly the intersection of an ascending and descending manifold. Tra-
ditionally, critical points in PL functions are identified by counting the
number of lower and higher components in the link of each vertex [9],
however, the intersections of ascending and descending manifolds are
an equivalent condition for classification: a minimum is the intersec-
tion of an ascending 3-manifold and a descending 0-manifold; a 1-
saddle is the intersection of an ascending 2-manifold and descending
1-manifold; a 2-saddle is the intersection of an ascending 1-manifold
and descending 2-manifold; and a maximum is the intersection of an
ascending 0-manifold and descending 3-manifold. Let An be an as-
cending n-manifold, and Dn be a descending n-manifold. Since all
n-manifolds are made up of simplices in K, we can represent each n-
manifold as the set of vertices that define its simplices. For example, a
tetrahedra in an ascending 3-manifold contributes its four corner ver-
tices to the set Ai

3, the ascending 3-manifold with origin i.

2.3 Persistence-based Simplification
A function f is simplified by repeated cancellation of its critical points.
Canceling a pair of critical points in the Morse-Smale complex repre-
sents smoothing the function by modifying gradient behavior in the
neighborhood of the critical points. We consider critical point pairs
that are connected by an arc in the complex, i.e., they are paired in the
combinatorial structure. Therefore, critical point pairs that can be can-
celed have consecutive indices. The valid cancellations are those of



minimum-1-saddle, 1-saddle-2-saddle, and 2-saddle-maximum pairs.
We refer to Gyulassy et al. [17] for a complete characterization of
these cancellations. The saddle-extremum and saddle-saddle cancel-
lations can be modeled as the union of manifold regions. In each can-
cellation, the ascending and descending manifolds of the two critical
points are merged across their respective boundaries. For example,
in a minimum-1-saddle cancellation, the ascending 3-manifold of the
minimum is merged across the ascending 2-manifold of the 1-saddle,
and the descending 1-manifold of the 1-saddle is merged with all 1-
manifolds incident on the descending 0-manifold of the minimum. In
a 1-saddle-2-saddle cancellation, the ascending 2-manifold of the 1-
saddle is merged with all ascending 2-manifolds incident on the as-
cending 1-manifold of the 2-saddle, and the descending 2-manifold of
the 2-saddle is merged with all descending 2-manifolds incident on
the 1-manifold of the 1-saddle. The boundaries of the ascending and
descending manifold of each critical point must be updated to reflect
the removal of those manifolds. However, this is only a combinatorial
change in the complex. The above characterization of cancellations
leads to a direct implementation when the manifolds are represented
as point sets.

Repeated cancellation in order of persistence removes critical point
pairs in a manner that preserves important features. The persistence
of a pair of critical points that are canceled is equal to the absolute
difference in their function values.

3 ALGORITHM

Overview We use a single sweep to construct both the combi-
natorial structure of the complex and the geometric structure of the
ascending manifolds. A second sweep uses this segmentation to guide
construction of the geometry of the descending manifolds in a man-
ner consistent with the topology identified in the first step. We view
the construction of the ascending and descending manifolds as an it-
eration through dimensions, where the interior of each n-manifold is
computed via region growing, and its n− 1-manifold boundaries are
recursively computed. We denote the interior of an n-manifold Mi

n as
Int(Mi

n), and the boundary as Bd(Mi
n). Figure 3 shows how we iter-

ate through dimensions while constructing the ascending manifolds.

3.1 Ascending 3-manifolds
Given a function f defined over the triangulation K of a volumetric
domain, we identify the set of minima Min of the PL function as
p ∈ Min ⇐⇒ p ∈ K0, f (p) < f (q) for all q ∈ Lk p. The set Min
contains the “seed points” for the ascending 3-manifolds of f ; each
minimum m ∈Min is the origin for a set of vertices that represent an
ascending 3-manifold. We sweep through the domain in sorted order
to classify each vertex as interior to an ascending 3-manifold, or lying
on the boundary. At each vertex p, we determine whether it is interior
or boundary to the ascending 3-manifold Ai

3 by inspecting the con-
nected components of the set IntLk−(p,A3) = Lk− p ∩ Int(A3),
the set of vertices already classified as interior to some ascending 3-
manifold A3 and also in the lower link of p. All vertices q ∈ Lk− p
are guaranteed to be classified previously, since we process the ver-
tices in sorted order. If the number n of connected components of
IntLk−(p,A3) is exactly one, then p is classified as an interior ver-
tex. If n is more than one, then p is classified as part of the boundary
between ascending 3-manifolds. Figure 4 shows how we classify a
vertex based on its link. Due to the triangulation, it is possible for n to
be zero, namely that no vertices in the link of p are interior vertices.
This case can happen where boundaries entirely encircle a region, and
we resolve it by creating a new ascending 3-manifold originating at p
to maintain the combinatorial structure of the complex.

3.2 Ascending 2-manifolds
In the first step of the algorithm we found all minima and associated
ascending 3-manifolds of f . The vertices classified as boundary form
the separating surfaces between the 3-manifold regions. We create
ascending 2-manifolds that separate adjacent ascending 3-manifolds.
Two ascending 3-manifolds, Ai

3, and A j
3 are considered adjacent if they

satisfy one of two conditions:

[a] [b]

[c] [d]

[e]

Fig. 3. (a) The algorithm at each iteration identifies interior and bound-
ary vertices of an ascending n-manifold. (b) Using minima as seed
points, we grow ascending 3-manifolds, finding vertices that are inte-
rior (blue) to a single 3-manifold. The grey region depicts the bound-
ary between ascending 3-manifolds. (c) We next compute ascending
2-manifolds by first identifying interior points. An ascending 2-manifold
(green) separates exactly two ascending 3-manifolds. (d) Ascending 1-
manifolds (yellow) separate a unique set of ascending 2-manifolds. (e)
Finally, the maxima (red) are found as the separating sets between as-
cending 1-manifolds.

1. There exists a boundary vertex p ∈ K0 such that the link of p
contains at least one vertex interior to Ai

3, at least one vertex
interior to A j

3, and no vertices interior to any other ascending 3-
manifold.

2. There exists pi, p j, and pk such that Ai
3 and A j

3 are incident on
each, and (pi, p j, pk) ∈ K2 is a face in the triangulation K.

Figure 5 illustrates these rules for determining when two ascending
3-manifolds are adjacent.

We create an ascending 2-manifold for every pair of adjacent as-
cending 3-manifolds. An ascending 2-manifold Ai j

2 separating Ai
3 and

A j
3 consists of all vertices p∈K0 such that p is classified as a boundary

and Ai
3 and A j

3 are incident on p. The triangulation of the surface rep-
resented by Ai j

2 is recovered by identifying triangles in K where every
vertex of the triangle is in Ai j

2 .
These ascending 2-manifolds represent the combinatorial pairing of

minima with 1-saddles in the Morse-Smale complex; each ascending
2-manifold is assigned a 1-saddle, and that saddle is paired with ex-
actly the two minima whose ascending 3-manifolds are separated by
the 2-manifold. In this way, we avoid the problem of explicity splitting
degenerate multi-saddles; all saddles identified in this way are guaran-
teed to be simple. We discuss further how multi-saddles are resolved
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p ppp

Fig. 4. (a) The lower link (blue points) is connected and classified as
interior, therefore the vertex p is an interior vertex. (b) The lower link
has multiple regions, therefore p is a boundary vertex. (c) The lower
link consisting of the blue and pink vertices is split by the pink vertices,
which are classified as boundary, therefore p is classified as a boundary
vertex.

a

S

b

B

A

p
C

B

A

Fig. 5. Left: The vertices in S separate two ascending 3-manifolds A
and B. Each vertex in S may additionally separate other ascending 3-
manifolds. Since the vertices form a face in the triangulation, SAB is an
ascending 2-manifold of the complex. Right: A single point p separates
the ascending 3-manifolds A and B. However, since no other ascending
3-manifold is incident on p, p forms the ascending 2-manifold SAB of the
complex.

in section 4.
We identify the adjacency of ascending 2-manifolds in a similar

way to identifying the adjacency of ascending 3-manifolds. We first
find vertices that are considered interior to an ascending 2-manifold.
A vertex p ∈ K0 ∩A2 is interior to an ascending 2-manifold Ai j

2 if Ai
3

and A j
3 are the only interior regions incident on p, and all vertices

q ∈ Lk p ∩ A2 are also in Ai j
2 . Therefore, vertices in A2 that separate

exactly two interior regions and do not lie directly on the merging of
two 2-manifolds are considered interior to an ascending 2-manifold.
The set of vertices that form the boundaries between ascending 2-
manifolds form a lattice we denote M1.

3.3 Ascending 1-manifolds
The pairing between ascending 3-manifolds and 2-manifolds form the
Minima - 1-Saddle connections in the Morse-Smale complex. Similar
to finding these connections, we identify pairings between 2-Saddles
and 1-Saddles as the pairing of ascending 1-manifolds and the as-
cending 2-manifolds they separate. A single 1-manifold may form the
shared boundary of several ascending 2-manifolds, therefore we asso-
ciate such an ascending 1-manifold A1 with an n-tuple of 2-manifolds
(A0

2, . . . ,A
n
2). A set of ascending 2-manifolds (A0

2, . . . ,A
n
2) are consid-

ered adjacent if there exist vertices pi and p j such that (pi, p j) ∈ K1
is an edge in the triangulation K, and A0

2, . . . ,A
n
2 are incident on both

vertices. An ascending 1-manifold A1 is part of the Morse-Smale com-
plex if and only if (A0

2, . . . ,A
n
2) are adjacent at both vertex endpoints of

an edge in K1 and there is no ascending 2-manifold Ai
2 such that the as-

cending 2-manifolds of the set (A0
2, . . . ,A

n
2,A

i
2) are adjacent along both

vertex endpoints of an edge in K1. Therefore, we create an ascending
1-manifold every place where ascending 2-manifolds merge, and that
1-manifold separates all 2-manifolds that are incident along its entire
length. Figure 6 shows how we segment M1 to form the ascending
1-manifolds. A vertex p of an ascending 1-manifold A1 is an interior
vertex if for all vertices q ∈ Lk p∩M1, A0

2, . . . ,A
n
2 are incident on q.

This condition is true when there are no other ascending 1-manifolds

A

D C

B

C

B

A

Fig. 6. Left: Four ascending 2-manifolds A, B, C, and D come together
along an ascending 1-manifold. The grey points represent A1 associ-
ated with A, B, C, and D, which also happen to separate interior points
marked in blue. Right: The boundary between ascending 2-manifolds
does not necessarily form a line in the triangulation. Here, the grey
points separate A, B, and C, and represent the ascending 1-manifold
associated with A, B, and C.

D

C

B

A
E

Fig. 7. The interior (colored) points of ascending 1-manifolds A, B, C, D,
and E meet at a cluster of vertices (grey). This set denotes a maximum
node in the complex, since it forms the boundary between the ascending
1-manifolds. The selection of the maximum vertex within A0 associated
with A, B, C, D, and E does not change the topology of the complex.
We pick the highest vertex in the cluster for which all the ascending
1-manifolds are incident.

in the link of p. The boundaries between ascending 1-manifolds form
small disjoint clusters of vertices we denote A0. Figure 7 shows that a
cluster of points can be the boundary between ascending 1-manifolds.

3.4 Maxima
Combinatorially, the ascending 1-manifolds incident on each cluster
of points in M0 represent the 2-Saddles that are connected to the Max-
imum represented by the cluster. Maxima can form the boundary be-
tween several ascending 1-manifolds, therefore we denote a maximum
as A0 associated with an n-tuple of incident ascending 1-manifolds
(A0

1, . . . ,A
N
1 ) . Similar to the way we defined ascending 1-manifolds,

A0 is a maximum of the Morse-Smale complex if (A0
1, . . . ,A

N
1 ) are ad-

jacent, and there is no Ai
1 such that (A0

1, . . . ,A
N
1 ,Ai

1) are adjacent. This
selects the vertex in each cluster of vertices that is connected to the
incident ascending 1-manifolds by an edge in the triangulation K. Fig-
ure 7 illustrates that a cluster of vertices are identified as a maximum
node in the Morse-Smale complex.

3.5 Descending Manifolds
The computation of the ascending manifolds identifies, partially, the
combinatorial structure of the Morse-Smale complex and produces a
point-set representation of ascending manifolds. We use this structure
to guide the construction of the descending manifolds in a manner that
incorporates the geometry of the ascending manifolds. The combi-
natorial structure of the Morse-Smale complex must be maintained:
intersections between ascending and descending manifolds must be
transversal. We accomplish this explicitly by finding the descend-
ing manifold regions restricted to the interior of each ascending n-
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Fig. 8. (a) The pair of maxima separated by a single edge in the trian-
gulation form an ascending 1-manifold. According to the combinatorial
nature of the complex, there must be some vertex in the ascending 1-
manifold that is a 2-saddle separating the maxima. (b) We resolve this
by inserting a vertex into the triangulation at each endpoint of the as-
cending 1-manifold.

manifold. We find the descending manifold in the interior of an as-
cending n-manifold to ensure that any classification performed will
not affect neighboring ascending n-manifolds. Due to the simulation
of differentiability, where integral lines are restricted to lie on edges of
the triangulation, it is possible for an ascending n-manifold to have no
interior points, or not have enough points to allow the propagation of
the descending manifolds. Figure 8 shows such a case, where an as-
cending 1-manifold consists of exactly one edge in the triangulation.
According to the combinatorial structure of the complex, there must
be a 2-saddle on this ascending 1-manifold, however, all its vertices
are already classified as maxima. One solution is the splitting of tetra-
hedra by inserting new vertices into the triangulation to ensure interior
points are present. Since we represent the Morse-Smale complex as
point sets, this splitting corresponds to adding a vertex and symbolic
links. We insert a copy of vertices in the boundary of ascending n-
manifolds, as shown in Figure 9, in a way that simulates splitting of
simplices in the triangulation. We simply duplicate these “split” ver-
tices, without actually splitting tetrahedra. The addition of vertices
ensures the presence of the necessary interior vertices for identifica-
tion of descending manifolds.

We use the same region growing to find the descending manifolds
within each augmented ascending manifold. We start with ascending
1-manifolds, and classify each interior point as interior/boundary to
the descending 3-manifold originating at the maxima that are the end-
points of the ascending 1-manifold. Next we perform the region grow-
ing in the interior of each ascending 2-manifold, starting with the clas-
sification attained in the first step for its ascending 1-manifold bound-
aries, and classify each vertex as interior/boundary to the descending
3-manifolds originating at the corners of the ascending 2-manifold.
The boundary vertices of the descending 3-manifolds restricted to the
ascending 2-manifolds are then identified as interior/boundary to the
descending 2-manifolds originating at the 2-saddles found in the first
step. The interior points of these descending 2-manifolds restricted
to the ascending 2-manifolds form the 1-manifold connector between
1-saddles and 2-saddles. Finally, we perform the full region growing
algorithm on each ascending 3-manifold, using the classification of its
boundaries from the previous step.

4 DISCUSSION

The algorithm we present computes a Morse-Smale complex for a
perturbed function fp that differs from the Morse-Smale complex
of the original function f in several ways. In fp we assume that
any two ascending 3-manifolds that are adjacent, i.e. they are sep-

[a] [b]

[c]

Fig. 9. (a) Three ascending 2-manifolds (green) separated by three as-
cending 1-manifolds (yellow), which are incident on a maximum (red).
(b) First, we insert a copy of the boundary vertex to each ascending
1-manifold, by splitting the edge incident on the maximum. (c) Next,
we add a copy of the 1-manifold boundaries to each of the ascending
2-manifolds, further splitting the triangulation. Now, we are guaranteed
to have sufficient interior vertices in the ascending manifolds to allow
independent identification of descending manifolds.

arated by exactly one vertex in the triangulation, have an ascending
2-manifold separating them. This generates a 1-saddle on the ascend-
ing 2-manifold that separates the two minima that are the origins of
the ascending 3-manifolds. However, it is possible that in f no such 1-
saddle exists; the interface between the two ascending 3-manifolds is
monotonic. In this case, another pair of ascending 2-manifolds in the
Morse-Smale complex of f would merge and separate the ascending 3-
manifolds, therefore there would be no ascending 2-manifold directly
separating the two ascending 3-manifolds. The 1-saddle implied in fp
corresponds to perturbing f along the merge of every pair of ascend-
ing 2-manifolds, so that each 2-manifold vertex separates exactly those
regions that are adjacent to it. Figure 10 illustrates the difference be-
tween the complex of fp and the complex of f . The additional critical
points inserted, however, have zero persistence, and therefore will be
canceled first. In fact, after canceling all zero persistence critical point
pairs, the complex of fp will be exactly the same as the complex of f .
After the zero persitence critical point pairs are cancelled, we get the
same topology for the complex as the algorithm in [17]. The differ-
ences between the results are a result of the implicit triangulation we
use in this approach, whereas in [17] operates on a piecewise constant
hexahedral grid.

Our new approach produces geometrically different results depend-
ing on whether we construct ascending or descending manifolds first.
After all zero persistence pairs are removed, the combinatorial struc-
ture of the complexes computed using either ordering will be equiv-
alent. However, some small changes to the geometry of the complex
occurr, as the location of saddles might be shifted. Large-scale fea-
tures, represented by high persistence pairs, are preserved.

Our approach to constructing Morse-Smale complexes implicitly
handles multi-saddles. We use the link conditions to identify only the
minima; all other critical points are classified by the algorithm, thereby
simulating differentiability at each vertex, and intrinsically splitting
multi-saddles. Each pair of adjacent ascending 3-manifolds is assigned
a separating ascending 2-manifold and a 1-saddle, removing the pos-
sibility of multi-1-saddles. Similarly, each ascending 1-manifold ter-
minates at a maximum at either end, enforcing the condition that non-
degenerate two saddles are connected to exactly two maxima. The
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Fig. 10. Three ascending 3-manifolds A, B, and C touch in f (left). In
the Morse-Smale complex of f there is no 1-saddle separating A and
B, therefore the ascending 2-manifold that separates A and C and the
ascending 2-manifold that separates B and C merge to separate A and
B. The function fp however ensures that there is a 1-saddle between
each adjacent ascending 3-manifolds (right). The Morse-Smale com-
plex for fp contains additional critical points, but the persistence pairs
introduced, such as the circled 1-saddle - 2-saddle pair, have zero per-
sistence. Canceling all the zero persistence pairs will produce the same
configuration as on the left.

construction of fp automatically splits manifolds that would repre-
sent a multi-saddle. There are many ways to resolve multi-saddles,
and our algorithm produces a complex that corresponds to splitting a
multi-saddle with n lower regions into n 1-saddles and a 2-saddle in
the middle.

5 IMPLEMENTATION

5.1 Data Structures

We implement the algorithm for volumetric data using point sets to
represent the ascending/descending manifolds. Each ascending n-
manifold contains the set of vertex indices representing the geometric
location of its interior vertices, a list of its ascending n− 1-manifold
boundaries, and a list of the ascending n + 1-manifolds that contain
it in its boundary. These lists represent the combinatorial structure
of the complex, since they connect ascending manifolds that originate
at critical points differing in index by one. Each ascending manifold
also contains a link to the descending manifold that originates at the
associated critical point. The descending manifolds contain the set of
vertices representing its interior vertices, and a link to the ascending
manifold associated with its critical point. The Morse-Smale complex
is stored as a list of ascending 0-manifolds, 1-manifolds, 2-manifolds,
and 3-manifolds.

Storing the set of interior vertices for a 3-manifold region is in-
efficient. We utilize the fact that the interior vertices of ascending
3-manifolds are contiguous, and store only a single seed vertex from
which we can flood-fill the entire ascending 3-manifold region. De-
scending 3-manifolds are treaded similarly, with the exception that
vertices that were symbolically split from its boundary are represented
explicitly. This duplicates the storage of the boundary vertices, since
they will be present in several descending 3-manifolds. However, this
is necessary to be able to maintain a independent classification for the
same vertex for each ascending manifold it is contained in. To flood
fill a 3-manifold, we store a one byte representation of the classifica-
tion at each vertex in the dataset. During construction of the complex,
it is necessary to query a vertex to determine its classification, and we
use this same structure to resolve those queries. Finally, it is necessary
to determine at each vertex which ascending manifold it is contained
in. We use a hash table to map the index location to the ascending
manifold that contains it. The exception to this is the interior vertices
of 3-manifolds, where we can determine the ascending 3-manifold by
finding the seed point.

Just as in [17], we represent cancellation of critical point pairs as a
merge tree, merging the interior points of each ascending/descending
manifold. To recover the geometry of a particular manifold, we tra-
verse the merge tree and find all leaf nodes that have been merged to
form that manifold. The same cancellation operation is performed in
each method.

Fig. 12. The maxima (red) identify the locations of the atoms in the
potential field of a C4H4 molecule. The 2-saddles (yellow) separating
these maxima represent the bonds between the atoms. A dip in the
potential in the center of the molecule is identified by a minimum (blue).
1-saddles are represented as teal spheres.

5.2 Run Time Behavior
Performing the sweep constructing the ascending manifolds requires a
classification operation at each vertex in the dataset, which is depen-
dent on the size k of the link in the triangulation K. While it is possible
for a triangulation to have k be on the order of the number of vertices
of the dataset, in practice it is bounded by a constant. The points are
processed in sorted order. The total running time to construct the as-
cending manifolds is O(n lgn) where n is the number of vertices in the
dataset. In the construction of the descending manifolds new vertices
are inserted into the triangulation. The number of vertices is depen-
dent on the geometric size and distribution of features in the dataset,
and the size of the Morse-Smale complex. In the worst case, where ev-
ery other vertex is a maximum, each vertex must be split into k3 new
vertices. Practically, however, the number of split vertices is a small
fraction of n, and is still bounded by a constant, therefore the expected
running time is still O(n lgn).

Cancellations are performed at interactive speeds, since we simply
add nodes to a merge tree for each cancellation. The geometry of the
sets of vertices representing the ascending/descending manifolds do
not change. In fact, the basic operations are the same as presented by
Gyulassy et al. [17], where we simply replace the geometry component
of each node in the complex with a point set.

6 RESULTS

The input data is given as scalar samples on a three-dimensional reg-
ular hexahedral grid. We create a triangulation of this function by
defining vertices to lie at sample locations, and the tetrahedralization
given by some implicit connectivity between the vertices. In general,
our method works for any tetrahedralized data, regular or irregular. In
our examples, our implicit connectivity subdivides each voxel of the
original data into six tetrahedra, in a manner where each vertex is con-
nected in a consistent manner to its neighbors. This consistency is a
valuable optimization when searching for regions in the link of a ver-
tex, since we can use the same graph to represent the link of any vertex,
and just replace the values at the nodes of the graph. We construct the
ascending and descending manifolds to obtain the Morse-Smale com-
plex of a permuted representation of the function, and then construct
the Morse-Smale complex of the actual function by canceling all zero
persistence critical point pairs. In the example in Figure 12, we show
how the Morse-Smale complex can be used to identify the locations of
the atoms in the C4H4 molecule.

Figure 11 illustrates the use of our algorithm in finding the features
for some well known datasets. Table 1 shows the timing information
for these datasets, as well as a comparison in terms of running time to
the construction using an artificial complex [17].

A direct comparison between the algorithm reveals that the method
we introduce in this paper is much faster for computing the initial full
resolution complex. Instead of performing costly cancellation opera-
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Fig. 11. The Morse Smale complex computed for three well-known datasets. The neghip data set (a) is a result of a spatial probability distribution
of the electrons in a high-potential protein molecule. Overlaying the 2-saddle-maximum arcs of the simplified complex (b) shows the structure of
high-potential regions. The hydrogen data (c) is a result of a simulation of the spatial probability distribution of the electron in a hydrogen atom
residing in a strong magnetic field. We extract the same features (d) for this dataset as in [17]. The aneurism data (e), is a Rotational C-arm x-ray
scan of the arteries of the right half of a human head. The 2-saddle-maximum arcs of the simplified complex (f) trace out structure of the arteries.

Data set Size (a) (b)
Neghip 64×64×64 7s 2m 35s
Hydrogen 128×128×128 27s 45m
Aneurism 256×256×256 3m 51s ∞

Table 1. The finest resolution Morse-Smale complex is computed for
well known datasets. We compare the running time of our algorithm (a)
to the simplification based algorithm presented in [17] (b).

tions within each voxel, our region growing skips through the mono-
tonic volumes in the data, and only requires special analysis at the
boundaries of 3-manifolds. This leads to a much more efficient al-
gorithm. Even though our point-set based method was implemented
without sophisticated optimizations, we avoid having to store an arti-
ficial complex, and therefore the memory footprint is up to 10 times
smaller.

7 CONCLUSIONS

We have presented an efficient algorithm for computing the Morse-
Smale complex for volumetric domains. We have shown that our al-
gorithm is faster and more efficient than previous methods. The re-
gion growing algorithm we present computes all dimensional com-
ponents of the complex, which has several advantages. The com-
plete decomposition of space allows us to consider topology-based
smoothing, compression, and improved topology-based visualization.
The point-set based method applies to general tetrahedralized meshes,
while maintaining speed and robustness on gridded data.
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intégrable ou d’une fonction numérique. Comptes Rendus de L’Académie
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